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1. Let p ∈ {2, 3, 5, 7 . . . } be a prime number. Given a rational number x, write
x = pk · m

n
where m and n are indivisible by p. We define vp(x) = vp(p

k m
n
) = k.

For instance v3(
5
12
) = v3(3

−1 · 5
4
) = −1. The function vp is called the p-adic

valuation.

Assume that none of x, y, xy, x+ y are equal to 0.

(a) Prove that vp(xy) = vp(x) + vp(y) and vp(x+ y) ≥ min{vp(x), vp(y)}.
(b) Prove that if vp(x) ̸= vp(y) then vp(x+ y) = min{vp(x), vp(y)}.

Solution: (a) Write x = pi · s
t

and y = pj · u
v

where s, t, u, v are indivisible
by p. Using symmetry, let us assume that i < j. First, we have

xy = pi+j · su
tv

and su, tv are indivisible by p since s, t, u, v were. Therefore vp(xy) = i+ j =
vp(x) + vp(y).

Second,

x+ y = pi
(s
t
+ pj−iuv

)
= pi · sv + pj−itu

tv
.

Since the common denominator is tv, we know that any powers of p which
appear in the fraction must do so in the numerator. Meaning it is a non-
negative power of p. Therefore vp(x+ y) ≥ i = min{vp(x), vp(y)}.
(b) Using the same analysis, if j − i > 0, then we know that p ∤ sv + pj−itu
since p | pj−itu but p ∤ sv. Therefore there are no powers of p in the numerator
either and so vp(x+ y) must be exactly i.

2. A graph G consists of a set of vertices V and a set of edges E, where an edge is
an unordered pair of vertices written e = uv = vu with u and v in V .

For u ∈ V , define the degree of u, written deg(u), to be the number of edges
having u as one of the endpoints. For instance deg(1) = 2 in the above graph
because the vertex 1 belongs to 2 edges: 12, 15.



A graph with V = {1, 2, 3, 4, 5, 6} as the set of vertices and
E = {12, 15, 23, 25, 34, 45, 46} as the set of edges.

(a) Prove that
∑

v∈V deg(v) = 2|E|. In words: the sum of all the degrees of all
the vertices is equal to twice the number of edges.

(b) A tree is a graph in which there are no cycles (e.g. 1 → 2 → 5 → 1 is a cycle
in the above graph as is 2 → 3 → 4 → 5) and the graph is “a single piece.”
Formally, this means that for every pair of vertices u, v ∈ V there is always
a way to travel from u to v by a sequence of edges u → v1 → v2 → · · · → v.

It is known that for trees, the number of edges and number of vertices
are related by |E| = |V | − 1. Combine this with the previous fact to show
that if a tree T has a vertex v with deg(v) = k ≥ 2 then T has at least k
vertices with degree 1 (called leaf vertices). Hint: let ni be the number of
vertices v with deg(v) = i.

Solution: (a) For every edge uv ∈ E, uv contributes 1 to deg(u) and 1 to
deg(v). Therefore every edge contributes 2 to the sum of all degrees. Hence
the sum must be 2|E|.



(b) Partition the sum,
∑

v∈V deg(v), according to the degree of v:

∑
v∈V

deg(v) =
∞∑
i=0

∑
v:deg(v)=i

deg(v)

=
∞∑
i=0

∑
v:deg(v)=i

i

=
∞∑
i=0

ni · i

where ni = #{v : deg(v) = i}.
On the other hand, this is 2|E| = 2|V | − 2 (using the fact about trees).
Similarly, we can partition |V | =

∑
ni. Thus

∞∑
i=0

ni · i = 2

(
∞∑
i=0

ni

)
− 2.

We can now simplify this to

∞∑
i=0

ni(i− 2) = −n1 + 0n2 + 1n3 + 2n4 + · · · = −2.

Now if nk ≥ 1, then we have

n1 = 2 + n3 + 2n4 + 3n5 + · · ·+ (k − 2)nk + · · · ≥ 2 + (k − 2) = k.

3. Let x, y, and z be non-negative real numbers. Prove that

(y + z)3 + 9x2y + 9x2z ≥ 24xyz.



Solution: We have that

(y + z)3 + 9x2y + 9x2z = (y + z)
(
(y + z)2 + (3x)2

)
≥ (y + z) · (2(y + z)(3x))

= 6x(y + z)2

≥ 24xyz,

and we are done.

4. Find, with proof, all positive integers x, y, and z such that

xy − zy = xy,

and z is odd.

Solution: Notice that xy = (x + z)y. Thus, z must have the same prime
factors as x. More generally, either x = kz or z = kx.

Case 1: x = kz. Then, we have kyzy = (k+1)zy. Since (k+1) ∤ k, k+1 | zy.
Since z is odd, k + 1 is odd and so k is even. This means that 2y divides
the left-hand side, so 2y divides the right hand side and thus must divide y.
However, 2y > y so this is a contradiction.

Case 2: kx = z. Then, we have xy = (k + 1)xy. Notice that this means x
is odd, since x | z. k must also be odd, since k | z. However, this yields an
obvious contradiction as k + 1 must be even so the right-hand side is even
while the left-hand side is odd.

Since in either case there is a contradiction, z cannot be an odd number.
Hence, there are no positive integers that satisfy the conditions.

5. Given a triangle ABC, with AB ̸= AC, let D lie on side BC such that AD
bisects ∠BAC. Let ℓ be a line tangent to the circumcircles of △ABD and
△ACD. Prove that ℓ and the perpendicular bisector of segment AD meet on
side BC.



Solution: Henceforth, we denote the circumcircle of a triangle T by (T ).

Since PQ is tangent to (ABD), ∠APQ = ∠ABP = α, and since PQ is
tangent to (ACD), ∠AQP = ∠ACQ = β. Let lines BP and CQ intersect
at a point R. Note that ∠APR = ∠ADB = ∠AQC, which means that
quadrilateral APRQ is cyclic. Hence, ∠BRC +∠PAQ = 180◦, so ∠BRC =
α + β.

Note that

∠BRC = 180◦−∠RBC−∠RCB = 180◦−α−∠B−β−∠C = ∠A−α−β,

so α + β = ∠A− α− β, which implies that α + β = ∠A/2.

By angle chasing, we obtain that

∠BPQ+∠QCB = ∠BPA+α+β+∠C = ∠B+∠C+∠A/2+α+β = 180◦,

so BPQC is cyclic as well.

In addition,

∠PAB = 180◦ − ∠BPA− α

= 180◦ − ∠B − ∠A/2− α

= ∠A/2 + ∠C − α

= β + ∠C = ∠PQA+ ∠ACB,

which implies that (APQ) and (ABC) are tangent at A. (will rewrite and
finish later)

6. (Tiebreaker) Suppose that the roots of the quadratic x2 + bx + c are α and β.
That is, suppose x2 + bx+ c = (x− α)(x− β). Show that (α− β)2 = b2 − 4c.

Next, suppose that the roots of a cubic f = x3 + bx2 + cx + d, where b, c, d are
real numbers, are α, β, γ. Define ∆ = (α− β)2(α− γ)2(β − γ)2. Show that

1. ∆ = 0 if and only if f has a repeated root

2. ∆ < 0 if and only if f has 1 real root and a pair of complex roots

3. ∆ > 0 if and only if f has 3 distinct real roots



Solution: If we expand (x − α)(x − β) = x2 − (α + β)x + αβ we find that
α + β = −b and αβ = c. Therefore

(α− β)2 = (α + β)2 − 4αβ = b2 − 4c.

1. Using the zero-product theorem: if a product of terms is 0 at least one
term must be 0

2. If α = w + zi and β = w − zi then (α − β)2 = (2zi)2 < 0. The terms
(α−γ)2 and (β−γ)2 are conjugate and a product of conjugate complex
numbers is positive. Therefore the whole product must be negative.

Conversely, if ∆ < 0 then α, β, γ cannot be all real numbers or else a
product of squares would be non-negative.

3. Follows from 1. and 2. because this is the last remaining case.


